Zaing yfabd dinibersity of 解etroleum \& flinerals DEPARTMENT OF CIVIL ENGINEERING
Second Semester 1433-34 / 2012-13 (122)
CE 203 STRUCTURAL MECHANICS I
Major Exam I
Tuesday, March 12, 2013 6:30-8:45 P.M.

| Student
 Name | Family | | | | First | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | |
| | | | | | | | |

CIRCLE YOUR COURSE--SECTION NO.					
Section \#	$1 \& 4$	3	$2 \& 8$	$5 \& 6$	7
Instructor	Hamdan	Suwaiyan	Salah	Khathlan	Gadhib

Summary of Scores

Problem	Full Mark	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	
Remarks		

Notes:

1. A sheet that includes selected Basic Formulae and definitions is provided with this examination.
2. Write clearly and show all calculations, FBDs, and units.

Problem 1: (20 points)
The given thin plate is made of two parts glued together as shown. The plate is subjected to an axial distributed load $\boldsymbol{w}(\mathrm{N} / \mathrm{m})$. Determine the largest value of \boldsymbol{w} that can be applied.

For the plate material : ultimate normal stress $=60 \mathrm{MPa}$
For the glue : ultimate normal stress $=30 \mathrm{MPa}$, and ultimate shear stress $=15 \mathrm{MPa}$
For the whole problem, use safety factor S.F. = 3

Problem 2: (20 points)
A bar with the stress-strain diagram shown was originally 1 m long with a square cross-sectional area of $100 \mathrm{~mm} \times 100 \mathrm{~mm}$.
When an axial tension load F is applied, the square cross-section became $99.95 \mathrm{~mm} \times 99.95 \mathrm{~mm}$.
Determine the following:
a) The magnitude of the applied force F.
b) The final length of the bar when the load F is applied.
c) The final length of the bar when the load F is released.
d) The final length of the bar when the applied load is 300 kN .
e) The final length of the bar when the 300 kN load is released.

Poisson's ratio, $\mathbf{v}=\mathbf{0 . 2 5}$

Problem 3 (20 pts.)
The rods AB and BC are subjected to the loads and temperature changes shown in the figure and table below. Determine the maximum allowable force \mathbf{F} that can be applied (in the shown direction) if

- the maximum allowable normal stress in AB is 150 MPa (tension or compression), and
- the maximum allowable normal stress in BC is $100 \mathrm{MPa}($ tension or compression), and
- the maximum allowable displacement of point A is $5(10)^{-4} \mathrm{~m}$.

Properties	L (m)	A $\left(\mathrm{m}^{2}\right)$	E (GPa)	$\Delta \mathrm{T}$ $\left({ }^{\circ} \mathrm{C}\right)$	α $\left(/{ }^{\circ} \mathrm{C}\right)$
AB	0.5	$4(10)^{-4}$	200	+40	$20(10)^{-6}$
BC	0.6	$3(10)^{-4}$	100	-60	$15(10)^{-6}$

Problem 4: (20 points)
Rigid member AC is hinged at A and is supported by an aluminum cable at C . Before applying the load, AC was horizontal and a gap, $\Delta=0.2 \mathrm{~mm}$ separated it from a steel rod as shown.

If $\mathrm{P}=24 \mathrm{kN}$, determine the following:
a) the stress in the aluminum cable.
b) the displacement of point C .
$\mathrm{E}_{\text {aluminum }}=70 \mathrm{GPa}, \mathrm{E}_{\text {steel }}=200 \mathrm{GPa}, \mathrm{L}_{\text {steel }}=0.5 \mathrm{~m}$
$A_{\text {aluminum }}=A_{\text {steel }}=\mathbf{5 0} \mathbf{~ m m}^{2}$

Problem 5: (20 points)
The steel block shown is subjected to a uniform pressure p on all the faces. Knowing that the change in length of edge AB is $-30 \times 10^{-3} \mathrm{~mm}$ and using $\mathrm{E}=200 \mathrm{GPa}$, and $\mathrm{G}=75 \mathrm{GPa}$, determine the followings:
a) The magnitude of the applied pressure, p.
b) The strains in the x, y, and z directions.
c) The new length of AB, CB, and BD after the application of the uniform pressure p .
d) The change in volume, using any approach.

Initial Dimensions

