

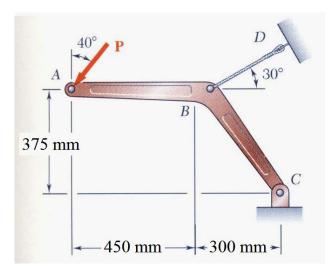
King Jahd University of Petroleum & Minerals DEPARTMENT OF CIVIL ENGINEERING First Semester 1431-32 / 2010-11 (101) CE 203 STRUCTURAL MECHANICS I Major Exam I

Tuesday, March 29, 2011 7:00-9:30 P.M.

Student	Family	First					
Name							
ID No. (9 Digits)							
(9 Digits)							

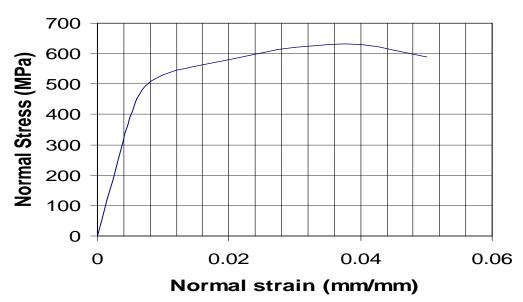
CIRCLE YOUR COUR\$E\$ECTION NO.						
Section #	1 & 2	3	4	5	6&7	8
Instructor	Altayyib	Dulaijan	Ghamdi	Suwaiyan	Khathlan	Ahmad

Summary of Scores


Problem	Full Mark	Score
1	20	
2	20	
3	20	
4	10	
5	20	
Total	100	
Remarks		

Notes:

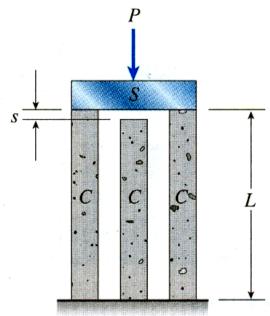
- 1. A sheet that includes selected Basic Formulae and definitions is provided with this examination.
- 2. Write clearly and show all calculations, FBDs, and units.


Rigid member ABC, which is supported as shown, is subjected to a load P. If the diameter of the pin at C is 20 mm and the diameter of cable BD is 10 mm, determine the *largest load* P that can be applied.

<u>Given</u>: τ_{fail} in the pin at C = 240 MPa; σ_{fail} in the cable BD = 300 MPa, factor of safety (F.S.) for both types of stresses is 3.0 The pin at C is in *double shear*

The stress-strain diagram for an aluminum alloy that is used for making aircraft parts is shown below. A specimen having a gauge length of 300 mm and a diameter of 25 mm is stressed to 600 MPa. If Poisson's ratio, v, for this material is 0.35, determine the following:

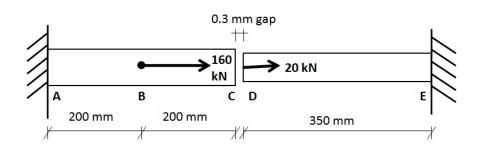
- 1- The modulus of elasticity and the shear modulus.
- 2- The new length when the specimen is loaded.
- 3- The new diameter when the specimen is loaded.
- 4- The final length if the load is removed.

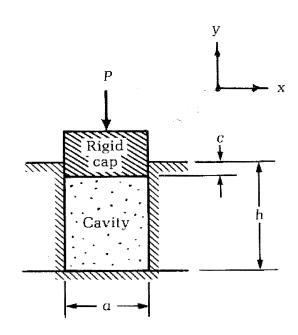


Stress-strain Diagram

A rigid plate (placed symmetrically atop three identical concrete posts) carries a load P as shown in the set-up given. If with an *initial* gap s = 1 mm, the set-up is also subjected to a temperature change $\Delta T = -40$ °C:

- 1. Determine the load *P* just to close the gap.
- 2. Determine the axial strain in middle post (for the loading from part 1 and temperature conditions specified).
- 3. Determine the normal stresses in *middle* and *right* posts (for the loading from part 1 and temperature conditions specified).


Assume: L = 3 m; $A_{\text{post}} = 40 \text{ x} 10^3 \text{ mm}^2$; E = 30 GPa; $\alpha = 12 \text{ x} 10^{-6} / {}^{\circ}\text{C}$.


The two rods have an initial gap of 0.3 mm before the application of the given loads.

- a) Show that the given problem is statically indeterminate.
- b) Determine the support reaction at point E.
- c) Determine the final length of rod DE.

For rod AC : E = 20 GPa , and A = 800 mm² For rod DE : E = 40 GPa , and A = 400 mm²

A rigid material has a smooth rectangular cavity of dimensions $(a \ge b \ge h)$, 25 mm ≥ 30 mm ≥ 90 mm engraved in it as shown below. The cavity is filled with a linearly elastic, isotropic material with modulus of elasticity, E = 2.5 GPa, and Poisson's ratio, v = 0.40, and compressed as shown in the figure by a rigid cap with a force **P** acting on it. If **P** = 70.8 kN, determine the decrease **c** in the height **h**, and the change in volume ΔV of the material.

